实用方法:收集和预处理文本数据,数据可视化,模型构建和自然语言处理应用
你会学到什么
使用Python和NLTK的自然语言处理的概念和实际应用。
要求
Python,Numpy,Pandas,Matplotlib和线性代数
MP4 |视频:h264,1280×720 |音频:AAC,44.1 KHz
语言:英语+中英文字幕(云桥CG资源站 机译)|大小:2.65 GB |时长:7h 14m
描述
自然语言处理是机器学习领域的一个热门话题。
本课程侧重于实践方法,有许多例子和开发功能应用。本课程开始向您解释如何获得编码的基本工具,并回顾主要的机器学习概念和算法。之后,本课程将向您全面介绍自然语言处理中的主要工具,如:文本数据组装、文本数据预处理、文本数据可视化、模型构建以及最终开发自然语言处理应用程序。
关于自然语言处理的热门话题是
-正则表达式-废弃网络
-用于提取文本内容的文本摘要库
-句子拆分和标记化
-词干和引理化
-停止和罕见的单词删除
-词性标注
-组块
-纳克
-单词包:TfidfVectorizer
-频率表
-共生矩阵
-字云库
-文本相似性
-文本聚类
-潜在语义分析
-主题建模
-文本分类
-情感分析
– Word2Vec库
-推荐系统:协同过滤
-垃圾邮件检测程序
-推特上的社交媒体挖掘
还有更多!…
在本课程中,您会发现对该理论的简要回顾以及图形解释,对于编码,它使用Python语言和NLTK库。
最后,本课程为您的实践和学习提供了许多数据集和其他资源。
学生有机会通过问答论坛、电子邮件:machine.learning.eirl@gmail.com或推特:@ AILearningCQ获得讲师的反馈
这门课是给谁的
对自然语言处理及其应用感兴趣的专业人士
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.50 GB | Duration: 7h 14m
Practical Approach : Collecting and Preprocessing text data, Data Visualization, Model Building and NLP Apps
What you’ll learn
Concepts and practical applications of Natural Language Processing using Python and NLTK.
Requirements
Python, Numpy, Pandas, Matplotlib and Linear algebra
Description
Natural Language Processing (NLP) is a hot topic into the Machine Learning field.
This course is focused in practical approach with many examples and developing functional applications. This course starts explaining you, how to get the basic tools for coding and also making a review of the main machine learning concepts and algorithms. After that this course offers you a complete explanation of the main tools in NLP such as: Text Data Assemble, Text Data Preprocessing, Text Data Visualization, Model Building and finally developing NLP applications.
Hot topics on NLP that I will cover with practical applications on this course are
– Regular expressions – Scrapping the web
– Textract library for extracting text content
– Sentence splitter and tokenization
– Stemming and Lemmatization
– Stop and rare word removal
– Part of Speech (POS) tagging
– Chunking
– N-grams
– Bag of Words: TfidfVectorizer
– Frequency Chart
– Co-occurence matrix
– Word cloud library
– Text similarity
– Text clustering
– Latent Semantic Analysis
– Topic Modeling
– Text Classification
– Sentiment Analysis
– Word2Vec library
– Recommender Systems: Collaborative Filtering
– Spam detector app
– Social Media Mining on Twitter
and much more!…
In this course you will find a concise review of the theory with graphical explanations and for coding it uses Python language and NLTK library.
Finally this course offers you many datasets and other resources for your practice and study.
The student has the opportunity to get a feedback from the instructor through Q&A forums, by email: machine.learning.eirl@gmail.com or by Twitter: @AILearningCQ
Who this course is for
Professionals with interest in Natural Language Processing topic and it’s applications
云桥CG资源站 为三维动画制作,游戏开发员、影视特效师等CG艺术家提供视频教程素材资源!
1、登录后,打赏30元成为VIP会员,全站资源免费获取!
2、资源默认为百度网盘链接,请用浏览器打开输入提取码不要有多余空格,如无法获取 请联系微信 yunqiaonet 补发。
3、分卷压缩包资源 需全部下载后解压第一个压缩包即可,下载过程不要强制中断 建议用winrar解压或360解压缩软件解压!
4、云桥CG资源站所发布资源仅供用户自学自用,用户需以学习为目的,按需下载,严禁批量采集搬运共享资源等行为,望知悉!!!
5、云桥CG资源站,感谢您的关注与支持!